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Abstract – In the present study a three-dimensional steady-state inverse heat conduction problem is solved using 

the conjugate gradient method to estimate the thermal resistance distribution of die-attach materials used in 

microelectronics. The thermal performance of such interface materials is of critical concern for engineers due to 

the power increase of microelectronics systems. The spatial distribution of the thermal resistance is obtained 

from temperature measurements at the top of the semiconductor device. Numerical experiments are performed in 

two different measurement situations (electrothermal method and infrared thermography). Results show the 

influence of the heat source configuration and of the measurement errors on the numerical solution of the inverse 

problem. 

 

 

 

1. INTRODUCTION 

Interface materials (adhesives, soft and hard solders…) are used as die-attach layers of power integrated circuits. 

Thermal properties of these interfaces play an essential role on the temperature of semiconductor junctions and 

have consequently a strong impact on reliability and cooling performances. The presence of defects (voids, 

dislocations) introduces thermal resistances that lead to temperature drops at the interfaces. So interface thermal 

phenomena are at the origin of a large part of the overheating of the device and of the presence of hot spots. 

Thermal resistance of die-attach materials is usually represented by one parameter by assuming uniform 

distribution at the interface. This single parameter has been estimated in numerous thermal characterizations of 

electronics systems. For instance, Gatto [3] measured the thermal resistance of adhesives interfaces used in 

hybrid power components. Maranzana [5] characterized SiO2 layers found in IGBT (Insulated Gate Bipolar 

Transistor) modules. Prasher et al. [7] investigated the thermal contact resistance of Phase Change Materials in 

an actual CPU (Central Processing Unit) heat sink installation. Raiszadeh and Derian [8] studied the thermal 

resistance of a new interface technology constituted by a corrugated copper substrate with thermal grease. But in 

practice, structural interface defects are not uniformly distributed and their location influences the temperature of 

the semiconductor device. This influence could become crucial in the case of harsh thermomechanical fatigue 

that tends to unstick the corners of adhesives layers or leads to the development of cracks in solders. The 

estimation of a non-uniform thermal resistance in multi-dimensional problem is very limited in the literature. 

Bendada et al. [2] reconstituted a profile of interface thermal resistance but it concerns a two-dimensional 

problem. 

The objective of this paper is to evaluate the interface thermal resistance distribution of a die-attach material 

thanks to a non-destructive experiment. This involves the development of a suitable inverse methodology. The 

direct problem is based on an original thermal model that solves the 3-D heat conduction equation in steady state 

conditions through a two-block electronic structure. It enables us to take into account a spatial distribution of the 

interface thermal resistance. The inverse problem consists in minimizing a functional that links the estimated and 

the measured temperatures taken at the top of the structure. An iterative process based on the conjugate gradient 

method is used for the minimization of this functional. Two different approaches are considered for the 

simulation of the temperature measurements: the average temperatures of the heat sources are available by 

simulating an electrothermal method or a quite detailed grid of temperature measurements is known thanks to 

infrared thermography. The influence of the measurement errors are investigated and several results are 

presented concerning the accuracy and the convergence rate of the inverse computation. 
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2. DIRECT PROBLEM 

 

2.1 Modeling 

Let us consider the problem of a semiconductor device (element 1) attached on a heat spreader (element 2) as 

shown in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Semiconductor device attached on a heat spreader. 

 

The upper face of the semiconductor device is submitted to a set of n heat sources due to the heat dissipation 

of elementary electronic components (transistors, diodes, thyristors…). The lower face of the heat spreader is 

submitted to a thermal resistance R2 that could be non-uniform. This coefficient is determined by the quality of 

the contact between the heat spreader and the heat sink of the system. The interface between the two elements is 

typically composed of a die-attach material suitable for the cooling of microelectronics structures: adhesive, soft 

or hard solder, thermal grease, Phase Change Material (PCM), composite… This interface is much thinner than 

other layers and is usually represented in simulations by an interface thermal resistance. This approach consists 

in considering the thickness of the interface as zero and replacing it by a temperature discontinuity. We assume 

in this study that this interface thermal resistance is not uniformly distributed. 

The technique used to solve the direct problem in steady state conditions is to consider each element 

(semiconductor and heat spreader) as a piecewise homogeneous and to solve them separately. The mathematical 

formulation of each stationary heat conduction problem (i=1 or 2) is given as follows: 
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where Ti is the temperature distribution in the element i, λi is its thermal conductivity, 
iupϕ  is the heat flux 

density distribution prescribed on the upper face of the element i, T∞ is the uniform temperature reference of the 

heat sink and Ri is the thermal resistance distribution established between the lower face of the element i and the 

heat sink. We should note that eqn.(5) must be seen as a boundary condition of the third kind where Ri(xi,yi) is 

the inverse of a non-uniform heat transfer coefficient. R2 is fixed by the contact of the heat spreader with the heat 

sink and is supposed to be known whereas R1 is given by: 
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where 
2upT  is the temperature distribution on the upper face of the element 2 and Rint is the interface thermal 

resistance distribution of the die-attach material that is known in the direct problem. The superscript ‘‘int‘‘ 

means that it concerns the points at the interface. The principle of the computation method is to develop an 

iterative process that determines the effective thermal resistance distribution R1(x1,y1). 
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2.2 Solution using the thermal quadrupole method 

The two separated problems are solved by using the thermal quadrupole method based on integral transforms, 

[6]. This technique allows us to link the temperature-heat flux density spectrum vectors at the upper face of the 

element to the corresponding vectors at the heat sink thanks to transfer matrices: 
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with mn,

~θ  and mn,

~Φ  the double Fourier cosine transforms of the temperature T and the heat flux density ϕ: 
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Here n and m are respectively the nth and mth harmonics in the x and y directions. N and M are the corresponding 

truncation orders. αn and βm are the eigenvalues in the x and y directions: 
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A, B, C and D are square diagonal matrices. A is given by: 
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B, C and D are calculated the same way with: 
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γn,m depends on the eigenvalues αn and βm and is given by: 
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I is the identity matrix whose size is the total of harmonics kept ((N+1)(M+1)×(N+1)(M+1)). R
~

 is a convolution 

matrix with the same size that depends on the thermal resistance distribution R(x,y). The calculation of the 

analytical coefficients of R
~

 requires a discretization of the lower face of the element. This face is typically 

discretized into a regular grid of 30×30 points to obtain accurate results. The details of this calculation are given 

in [6]. 

This formulation leads to solve a two-equation system with two unknowns: the spectrum vector of the 

temperature at the upper face of the element )(
~

upθ  and the spectrum vector of the heat flux density at the heat 

sink )(
~ ∞Φ . Indeed, the heat flux density distribution at the upper face of the element is known ( upϕ ) and the 

same for the temperature of the heat sink (T∞). Note that this solving requires to invert a 

(N+1)(M+1)×(N+1)(M+1) matrix. Once these two unknown spectra have been computed, we return to the space 

domain by using the following inverse expression (for the temperature for example): 
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where Nn,m is the norm of the scalar product: 
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2.3 Iterative algorithm for solving the direct problem 

The previous solution has to be integrated into an original iterative algorithm. The process is initialized by 

setting an initial distribution ),( 11
0
1 yxR . Thus we obtain the heat flux density distribution at the lower face of 

the element 1 by solving the heat conduction problem for i=1. This distribution is prescribed into the upper face 
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of the element 2 ( ),( 22
0

2
yx

up
ϕ ) because of the continuity of the heat flux density through the interface. Then the 

heat conduction problem in the element 2 can be solved and leads to the temperature distribution ),( 222

0 yxTup  to 

compute a second distribution ),( 11
1
1 yxR  given by: 
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This calculation loop is repeated until the convergence of the distribution ),( 111 yxR
j

. The detailed principle 

of this iterative process is given on Figure 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Principle of the iterative process for solving the 3-D heat conduction direct problem. 

 

2.4 Validation of the direct problem 

The thermal model is validated by simulating a RF (Radio Frequency) Power Component and comparing the 

results with those given by the Finite-Element code Femlab. We study the structure described in Table 1 and 

Figure 3. The contact between the element 2 and the heat sink is assumed to be perfect (R2=1.10-10 K.m2.W-1) 

and the temperature of the heat sink T∞ is set equal to 0°C. The die-attach material is supposed to be an adhesive 

with a lack of contact on one corner, the corresponding interface thermal resistance distribution is simulated by a 

spatial sinusoidal function (see Figure 4). 

 

 λ (W.m-1.K-1) L (mm) l (mm) e (mm) 

Element 1 (AsGa) 44 3.08 1.26 0.1 

Element 2 (CuW) 150 4.71 2.5 0.5 

 

Table 1. Thermal properties and dimensions of the structure for the validation of the direct problem. 

 

 

 
Figure 3. Heat source configuration on the upper face 

of element 1 for the validation of the direct problem. 

Figure 4. Interface thermal resistance distribution 

(K.m2.W-1): Rint=2sin((L1-x1)y1) - validation of the direct 

problem. 
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Figure 5. Validation of the direct problem - temperature profiles on the upper face of element 1: 

(a) for y1=0.63 mm, (b) for x1=1.13 mm. 

 

As we can see on Figure 5, the results of the model are in very good accordance with the Finite Element 

Method. The differences between the two methods remain lower than 3°C. We clearly observe on these 

temperature profiles the influence of the non-uniformity of the interface thermal resistance. 

We should add that this model has been generalized to n-layer electronic structures and has given quite 

satisfactory results in terms of accuracy and time computation costs by comparing with the Finite Element 

Method. Note that this model does not require to mesh the entire structure, which represents an important 

advantage with such 3-D geometries (small thickness compared to the other dimensions of the element, very 

different scales between elements). 

 

3. INVERSE PROBLEM 

 

3.1 Formulation of the three-dimensional steady-state inverse heat conduction problem 

The interface thermal resistance distribution ),( 11 yxRint  is regarded as the unknown of the inverse problem, the 

other variables of the previous direct problem being known. We consider available some temperature 

measurements on the upper face of the element 1 to estimate ),( 11 yxRint . 

We suppose that the heat sources are constituted by some electrolytic deposits heated by an electrical current 

that provides the power supply. Two different measurement methods are simulated in steady state conditions. 

First, we study an electrothermal method that gives the average temperature of the heat sources thanks to a 

conversion from the electrical resistance of the electrolytic deposits to their average temperature. Then we 

examine the case of the infrared thermography that provides the temperature at some grid locations linked to the 

resolution of the infrared camera. 

The interface is discretized in the direct problem into a regular grid in which we assume that the interface 

thermal resistance is constant on a given number of zones. These zones are defined by dividing the interface into 

nb zones of equal areas: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Partitions of the interface into nb zones of constant thermal resistance: 

(a) 4-zone partition, (b) 16-zone partition, (c) 64-zone partition. 
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So the objective of the inverse problem is to search a nb-component vector, with nb the number of zones of 

constant interface thermal resistance: 
1 2

1[    ;      ;          ;      ;          ;   ] [ ]i nb t i i nb

int int int int int int iR R R R R R =
== =� �  (19) 

The inverse analysis aims at determining the unknown vector intR  from the temperature measurements 

denoted by iY , i=1 to I, where I represents the number of heat sources in the case of the electrothermal method 

or the number of grid locations of the camera in the case of the infrared thermography. This problem is 

formulated in the least-square sense and consists in finding the optimal solution that minimizes the functional: 
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where )ˆ(ˆ intRη  are the estimated temperatures determined from the solution of the direct problem by using an 

estimated vector intR̂ . The superscript ‘‘^‘‘ denotes the estimated quantities. 

 

3.2 The conjugate gradient method for minimization 

An iterative process based on the conjugate gradient method is used for the estimation of intR  to minimize the 

functional J, [4]. At each iteration k, the previous estimation k
intR̂  is corrected according to: 
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k
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where kρ  is the search step size and kw  is the direction of descent. 

The vector kw  is determined with the conjugate gradient equations: 
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with J∇  the gradient vector of the functional J . The components of J∇  are given by: 

,
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J
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 (26) 

The gradient vector is calculated by solving the sensitivity equations. 

The positive scalar kρ  is the minimum of the one variable function: 
1ˆ ˆ( ) ( ) ( )k k k

int intr J R J R rw+Φ = = +  (27) 

A linearization of this equation leads to the expression of kρ  as follows: 
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where η̂∇  is the gradient vector of the estimated temperatures and is defined as the sensitivity matrix denoted by 

X. This matrix is obtained by solving the sensitivity problem. 

 

3.3 The sensitivity problem 

The gradient vector J∇  is obtained from eqn.(20) in the following manner: 

( ) ( )ˆ ˆ ˆt t
J Y X Yη η η∇ = −∇ − = − −  (29) 

Let R∆  be a variation of the interface thermal resistance. The components of X are defined by: 
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In practice, the value of ε R∆  is chosen as: 
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Finally the sensitivity problem is solved by computing nb times the eqn.(30) and deducing the different 

components of the gradient vector J∇  with eqn.(29). 
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3.4 Computational procedure 

The computational procedure for the solution of this inverse problem may be summarized as follows: 

• k←0: choose an initial distribution 0

1 1
ˆ ( , )intR x y . 

• Repeat: 

Step 1. Solve the direct problem given by eqns (1) to (6) with 1 1 1 1
ˆ( , ) ( , )k

int intR x y R x y=  to compute ( )int
ˆˆ kRη . 

Step 2. Compute the functional ( )int
ˆ kJ R  from eqn.(20) and examine the stopping criterion: ( )int

ˆ kJ R ε< , 

with ε  a small-specified number. Stop the iterative process if satisfied, continue if not. 

Step 3. Solve the sensitivity problem to compute the sensitivity matrix X given by eqn.(30) and the 

gradient vector ( )int
ˆ kJ R∇  given by eqn.(29). 

Step 4. Compute the direction of descent kw  from eqns (23) to (25). 

Step 5. Compute the step size kρ  given by eqn.(28). 

Step 6. Compute the new estimation 1

1 1
ˆ ( , )k

intR x y+ from eqn.(21). 

Step 7. k←k+1: return to Step 1. 

 

4. RESULTS AND DISCUSSION 

In this section, we study the validity of our inverse method in predicting the interface thermal resistance 

distribution of a die-attach material from temperature measurements at the top of the structure. In all the test 

cases, we consider the attachment of a RF semiconductor in AsGa (λ1=44 W.m-1.K-1) on a heat spreader in CuW 

(λ2=150 W.m-1.K-1), as shown in Figure 7. We suppose that the heat spreader is perfectly cooled on its lower 

face (R2=1.10-20 K.m2.W-1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. RF structure studied in the numerical experiments. 

 

An adhesive constitutes the interface and its thermal resistance is supposed to vary with the position 

according to the following function: 

)sin(10.5),( 11
2

11 yxyxf ×= −  (32) 

The exact distribution of the interface thermal resistance depends on the number of zones of constant interface 

thermal resistance, that is to say the number of components of the vector intR . Three cases will be investigated 

(see Figure 8): a 4-component vector, a 16-component vector and a 64-component vector. The objective now is 

to choose a heat source configuration on the upper face of the element 1 suitable for the estimation of each 

component of the vector Rint. 
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Figure 8. Exact interface thermal resistance distributions (K.m2.W-1) investigated in the numerical experiments: 

(a) 4-component vector, (b) 16-component vector, (c) 64-component vector. 
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Moreover, the temperature measurements are simulated by taking into account random measurement errors. 

The simulated experimental data can be expressed as: 
exact

i i iY Y ω= + σ  for i=1 to I (33) 

where exact

iY  is the solution of the direct problem with the exact distribution of the interface thermal resistance, σ 

is the standard deviation of the measurements and ωi is a random number chosen from a normal distribution with 

mean zero, variance one and standard deviation one. 

 

4.1 First numerical experiment: the electrothermal method 

The electrothermal method just providing the average temperatures of the heat sources, the number of 

components of the vector Rint can not be very high. So we search a 4-component vector whose distribution is 

shown on Figure 8a and we illustrate the influence of the heat source configuration. In this part, we assume exact 

measurement data, then σ is set equal to zero in eqn.(33). 

 

4.1.1 Heat source configuration 1 

First we examine the case of five long and parallel heat sources shown in Figure 9. The stopping criterion is 

not satisfied in this case. The exact and estimated components of the vector Rint are given in Figure 10. We learn 

from this figure that the computed values are not in agreement with the exact values. We deduce that this heat 

source configuration does not permit to reach a sufficient sensitivity for the estimation of Rint in the case of the 

electrothermal method. 
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Figure 9. Heat source configuration 1 on the upper 

face of the element 1. 

Figure 10. Estimation of the 4-component vector Rint 

(electrothermal method, heat source configuration 1, σ=0). 

 

4.1.2 Heat source configuration 2 

Now we choose to place one square heat source just in front of each zone of constant interface thermal 

resistance (see Figure 11). Figure 12 shows that this heat source configuration improves the sensitivity of the 

inverse method and leads to much more accurate results than the previous one. This estimation is obtained in 

only four iterations thanks to the gradient conjugate method. 

 

1 2 3 4
0

1

2

3

4

5

6

7
x 10

-6

Component

In
te

rf
ac

e 
th

er
m

al
 r

es
is

ta
nc

e 
(K

.m
²/

W
)

exact value
initial value
estimated value

 
Figure 11. Heat source configuration 2 on the 

upper face of the element 1. 

Figure 12. Estimation of the 4-component vector Rint 

(electrothermal method, heat source configuration 2, σ=0). 

 

4.2 Second numerical experiment: the infrared thermography 

Here we consider that an infrared camera provides a 20×20 temperature measurements grid. The grid locations 

are uniformly spaced on the upper face of the element 1. We are able to estimate a more discretized distribution 

than in part 4.1: a 16-component vector (Figure 8b) and a 64-component vector (Figure 8c). Besides, the 

measurement error for the infrared data is taken as σ is equal to 0.5K in eqn.(33), that is to say about 1% of the 

difference between the average and the minimum of the exact measured temperatures for the heat source 

configuration 1 and about 2% for the heat source configuration 2. 
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4.2.1 Estimation of a 16-component vector 

Similar to the previous part, we compare the results obtained with the two heat source configurations. We 

note on Figure 13 that the two different configurations give a quite satisfactory distribution after 10 iterations. 

However, the minimization of the functional ( )int
ˆ kJ R  on Figure 14 shows that the configuration 2 requires less 

iterations than the configuration 1 to obtain an accurate estimation. 
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Figure 13. Estimation of the 16-component vector Rint after 10 iterations (infrared thermography, σ=0.5K): 

(a) heat source configuration 1, (b) heat source configuration 2. 
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Figure 14. Evolution of the functional J for the estimation of the 16-component vector Rint (infrared 

thermography, σ=0.5K): (a) heat source configuration 1, (b) heat source configuration 2. 

 

4.2.2 Estimation of a 64-component vector 

To compute this estimation we use the heat source configuration 2 which seems to be more suitable for the 

identification of a high number of components. The evolution of the computed distributions for σ=0 (see Figure 

15) shows that the estimation of a nb-component vector with no measurement error requires approximately nb 

iterations. We observe on Figure 16a the estimation obtained for σ=0.5K. Let us examine the covariance matrix 

related to the estimation of 
intR . Its diagonal is composed by the squared standard deviations 2

ˆ i
intR

σ  of the 

estimated components ˆ i

intR  (eqn.(34)) and allows us to estimate the relative error ˆ
intRδ on the components of 

intR  

(eqn.(35)): 

2 1 2

ˆ
1

ˆ ˆ( ) ( )  with ( ) i
int

i nb
t

int int R
i

cov R X X diag cov R
=

−

=
  = σ = σ   

 (34) 

ˆ

1

ˆ
i
int

i nb

R

int i

int
i

R
R

=

=

σ 
δ =  

  

 (35) 

Figure 16b shows that we obtain a confident distribution ( ˆ
intRδ ≤0.1) on the zones where the gradient of the 

interface thermal resistance is the most important. On the contrary, the region where the gradient is poor (low x1 

and y1 coordinates) leads to a less satisfactory estimation ( ˆ
intRδ ≥0.5). 
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Figure 15. Estimated interface thermal resistance distributions (K.m2.W-1) for the 64-component vector Rint 

(infrared thermography, heat source configuration 2, σ=0): 

(a) 10 iterations, (b) 30 iterations, (c) 50 iterations, (d) 70 iterations. 
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Figure 16. Estimation of the 64-component vector Rint (infrared thermography, heat source configuration 2, 

σ=0.5K): (a) estimated distribution ˆ
intR  (K.m2.W-1), (b) isovalues of the relative error ˆ

intRδ . 
 

We should note that this computation is quite heavy in terms of time calculation because the direct problem 

is solved nb times in the sensitivity problem at each iteration. This drawback could be avoided thanks to a 

function estimation approach using the conjugate gradient algorithm and the solution of the adjoint problem 

which constitutes the next step of this study. 

 

5. CONCLUSIONS 

The conjugate gradient method has been successfully applied for solving a 3-D steady-state inverse heat 

conduction problem to estimate the interface thermal resistance distribution of a die-attach material. A powerful 

thermal model has been developed for the direct problem. This model is particularly suitable to solve the 3-D 

heat conduction equation in microelectronics structures. The accuracy and the convergence rate of the inverse 

algorithm strongly depend on the heat source configuration chosen for the thermal excitation of the structure on 

the upper face of the semiconductor material. It appears that uniformly spaced square heat sources are more 

suitable than thin and parallel ones. Moreover, with no measurement error, the required number of iterations has 

to be equal at least to the number of unknowns of the discretized interface thermal resistance distribution. The 

influence of the measurements errors are also investigated and do not prevent to obtain a quite confident 

distribution. Finally, our calculation could be optimized by estimating both the values of the interface thermal 

resistance and the zonation, that is to say the partition of the interface whose parts correspond to the zones where 

the thermal resistance is constant, [1]. 
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